Nuprl Lemma : rminus_functionality_wrt_bdd-diff

x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y)  bdd-diff(-(x);-(y)))


Proof




Definitions occuring in Statement :  rminus: -(x) bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rminus: -(x) bdd-diff: bdd-diff(f;g) exists: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: nat: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtract: m top: Top
Lemmas referenced :  le_wf squash_wf true_wf istype-int absval_sym subtract_wf subtype_rel_self iff_weakening_equal minus-minus minus-add istype-void minus-one-mul nat_plus_wf istype-le absval_wf bdd-diff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt hypothesisEquality cut hypothesis dependent_functionElimination sqequalRule applyEquality lambdaEquality_alt imageElimination introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType minusEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination independent_functionElimination isect_memberEquality_alt voidElimination because_Cache functionIsType

Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  bdd-diff(-(x);-(y)))



Date html generated: 2019_10_16-PM-03_07_11
Last ObjectModification: 2018_11_08-PM-05_56_56

Theory : reals


Home Index