Nuprl Lemma : rminus_functionality_wrt_bdd-diff
∀x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y) 
⇒ bdd-diff(-(x);-(y)))
Proof
Definitions occuring in Statement : 
rminus: -(x)
, 
bdd-diff: bdd-diff(f;g)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rminus: -(x)
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
Lemmas referenced : 
le_wf, 
squash_wf, 
true_wf, 
istype-int, 
absval_sym, 
subtract_wf, 
subtype_rel_self, 
iff_weakening_equal, 
minus-minus, 
minus-add, 
istype-void, 
minus-one-mul, 
nat_plus_wf, 
istype-le, 
absval_wf, 
bdd-diff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
minusEquality, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
because_Cache, 
functionIsType
Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  bdd-diff(-(x);-(y)))
Date html generated:
2019_10_16-PM-03_07_11
Last ObjectModification:
2018_11_08-PM-05_56_56
Theory : reals
Home
Index