Nuprl Lemma : rneq-zero-or_wf

[x,y:ℝ].  rneq-zero-or(x;y) ∈ x ≠ r0 ∨ y ≠ r0 supposing x ≠ r0 ∨ y ≠ r0


Proof




Definitions occuring in Statement :  rneq-zero-or: rneq-zero-or(x;y) rneq: x ≠ y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q prop: subtype_rel: A ⊆B all: x:A. B[x] sq_stable__rneq-or sq_stable: SqStable(P) squash: T implies:  Q
Lemmas referenced :  rneq_wf int-to-real_wf real_wf sq_stable__rneq-or subtype_rel_self sq_stable_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry unionIsType universeIsType extract_by_obid isectElimination thin hypothesisEquality natural_numberEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType applyEquality instantiate functionEquality unionEquality imageMemberEquality baseClosed rename functionExtensionality

Latex:
\mforall{}[x,y:\mBbbR{}].    rneq-zero-or(x;y)  \mmember{}  x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0  supposing  x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0



Date html generated: 2019_10_29-AM-09_36_22
Last ObjectModification: 2019_01_09-PM-05_24_47

Theory : reals


Home Index