Nuprl Lemma : sq_stable__rneq-or
∀x,y:ℝ.  SqStable(x ≠ r0 ∨ y ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
rneq-zero-or: rneq-zero-or(x;y)
, 
sqs-rneq-or, 
decidable__lt, 
any: any x
, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
sqs-rneq-or, 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
lifting-strict-less, 
decidable__lt, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0)
Date html generated:
2019_10_29-AM-09_36_14
Last ObjectModification:
2019_01_09-PM-05_22_16
Theory : reals
Home
Index