Nuprl Lemma : sq_stable__rneq-or

x,y:ℝ.  SqStable(x ≠ r0 ∨ y ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y int-to-real: r(n) real: sq_stable: SqStable(P) all: x:A. B[x] or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  member: t ∈ T rneq-zero-or: rneq-zero-or(x;y) sqs-rneq-or decidable__lt any: any x decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  sqs-rneq-or lifting-strict-decide istype-void strict4-decide lifting-strict-less decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}x,y:\mBbbR{}.    SqStable(x  \mneq{}  r0  \mvee{}  y  \mneq{}  r0)



Date html generated: 2019_10_29-AM-09_36_14
Last ObjectModification: 2019_01_09-PM-05_22_16

Theory : reals


Home Index