Nuprl Lemma : rset-member_functionality

A,B:Set(ℝ). ∀x,y:ℝ.
  ((∀y:ℝSqStable(y ∈ A))  (∀y:ℝSqStable(y ∈ B))  rseteq(A;B)  {(x ∈ A)  (y ∈ B)} supposing y)


Proof




Definitions occuring in Statement :  rseteq: rseteq(A;B) rset-member: x ∈ A rset: Set(ℝ) req: y real: sq_stable: SqStable(P) uimplies: supposing a guard: {T} all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  rset-member: x ∈ A guard: {T} rseteq: rseteq(A;B) rset: Set(ℝ) all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  set_wf sq_stable_wf iff_wf real_wf all_wf req_wf req_witness
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename setElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination applyEquality lambdaEquality instantiate functionEquality cumulativity universeEquality productElimination

Latex:
\mforall{}A,B:Set(\mBbbR{}).  \mforall{}x,y:\mBbbR{}.
    ((\mforall{}y:\mBbbR{}.  SqStable(y  \mmember{}  A))
    {}\mRightarrow{}  (\mforall{}y:\mBbbR{}.  SqStable(y  \mmember{}  B))
    {}\mRightarrow{}  rseteq(A;B)
    {}\mRightarrow{}  \{(x  \mmember{}  A)  {}\mRightarrow{}  (y  \mmember{}  B)\}  supposing  x  =  y)



Date html generated: 2016_05_18-AM-08_08_04
Last ObjectModification: 2016_01_17-AM-02_21_19

Theory : reals


Home Index