Nuprl Lemma : rset-member_functionality
∀A,B:Set(ℝ). ∀x,y:ℝ.
  ((∀y:ℝ. SqStable(y ∈ A)) ⇒ (∀y:ℝ. SqStable(y ∈ B)) ⇒ rseteq(A;B) ⇒ {(x ∈ A) ⇒ (y ∈ B)} supposing x = y)
Proof
Definitions occuring in Statement : 
rseteq: rseteq(A;B), 
rset-member: x ∈ A, 
rset: Set(ℝ), 
req: x = y, 
real: ℝ, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
rset-member: x ∈ A, 
guard: {T}, 
rseteq: rseteq(A;B), 
rset: Set(ℝ), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Lemmas referenced : 
set_wf, 
sq_stable_wf, 
iff_wf, 
real_wf, 
all_wf, 
req_wf, 
req_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
setElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
lambdaEquality, 
instantiate, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination
Latex:
\mforall{}A,B:Set(\mBbbR{}).  \mforall{}x,y:\mBbbR{}.
    ((\mforall{}y:\mBbbR{}.  SqStable(y  \mmember{}  A))
    {}\mRightarrow{}  (\mforall{}y:\mBbbR{}.  SqStable(y  \mmember{}  B))
    {}\mRightarrow{}  rseteq(A;B)
    {}\mRightarrow{}  \{(x  \mmember{}  A)  {}\mRightarrow{}  (y  \mmember{}  B)\}  supposing  x  =  y)
Date html generated:
2016_05_18-AM-08_08_04
Last ObjectModification:
2016_01_17-AM-02_21_19
Theory : reals
Home
Index