Nuprl Lemma : rsum-split2

[n,m:ℤ]. ∀[k:{n..m 1-}]. ∀[x:{n..m 1-} ⟶ ℝ].  {x[i] n≤i≤m} {x[i] n≤i≤k} + Σ{x[i] 1≤i≤m}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y radd: b real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  rsum-split int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf itermAdd_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma req_witness rsum_wf radd_wf decidable__lt istype-le istype-less_than int_seg_wf real_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality inhabitedIsType setElimination rename independent_isectElimination productElimination imageElimination dependent_functionElimination unionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache dependent_set_memberEquality_alt addEquality productIsType closedConclusion functionIsType isectIsTypeImplies

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\{n..m  +  1\msupminus{}\}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{x[i]  |  k  +  1\mleq{}i\mleq{}m\}))



Date html generated: 2019_10_29-AM-10_11_52
Last ObjectModification: 2019_06_25-PM-04_43_55

Theory : reals


Home Index