Nuprl Lemma : rsum-split2
∀[n,m:ℤ]. ∀[k:{n..m + 1-}]. ∀[x:{n..m + 1-} ⟶ ℝ].  (Σ{x[i] | n≤i≤m} = (Σ{x[i] | n≤i≤k} + Σ{x[i] | k + 1≤i≤m}))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
rsum-split, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
req_witness, 
rsum_wf, 
radd_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
int_seg_wf, 
real_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
dependent_set_memberEquality_alt, 
addEquality, 
productIsType, 
closedConclusion, 
functionIsType, 
isectIsTypeImplies
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[k:\{n..m  +  1\msupminus{}\}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{x[i]  |  k  +  1\mleq{}i\mleq{}m\}))
Date html generated:
2019_10_29-AM-10_11_52
Last ObjectModification:
2019_06_25-PM-04_43_55
Theory : reals
Home
Index