Nuprl Lemma : rtermDivide?_wf
∀[v:rat_term()]. (rtermDivide?(v) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
rtermDivide?: rtermDivide?(v)
, 
rat_term: rat_term()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
rtermConstant: "const"
, 
rtermDivide?: rtermDivide?(v)
, 
pi1: fst(t)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
rtermVar: rtermVar(var)
, 
rtermAdd: left "+" right
, 
rtermSubtract: left "-" right
, 
rtermMultiply: left "*" right
, 
rtermDivide: num "/" denom
, 
rtermMinus: rtermMinus(num)
Lemmas referenced : 
rat_term-ext, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
bfalse_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
btrue_wf, 
rat_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
promote_hyp, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis_subsumption, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
tokenEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
dependent_pairFormation_alt, 
equalityIstype, 
voidElimination, 
universeIsType
Latex:
\mforall{}[v:rat\_term()].  (rtermDivide?(v)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_29-AM-09_29_48
Last ObjectModification:
2019_03_31-PM-05_25_24
Theory : reals
Home
Index