Nuprl Lemma : rv-be-dist
∀[n:ℕ]. ∀[a,b,c:ℝ^n].  (a_b_c ⇒ (d(a;c) = (d(a;b) + d(b;c))))
Proof
Definitions occuring in Statement : 
rv-be: a_b_c, 
real-vec-dist: d(x;y), 
real-vec: ℝ^n, 
req: x = y, 
radd: a + b, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
cand: A c∧ B, 
rv-be: a_b_c, 
not: ¬A, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-between_wf, 
not_wf, 
real-vec-sep_wf, 
rv-T-iff, 
nat_wf, 
real-vec_wf, 
radd_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
real-vec-dist_wf, 
req_witness, 
rv-be_wf, 
rv-T-dist
Rules used in proof : 
productEquality, 
independent_pairFormation, 
productElimination, 
isect_memberEquality, 
because_Cache, 
natural_numberEquality, 
setEquality, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (a\_b\_c  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))
 Date html generated: 
2016_10_28-AM-07_38_13
 Last ObjectModification: 
2016_10_27-PM-02_10_16
Theory : reals
Home
Index