Nuprl Lemma : sq_stable__metric-subspace
∀[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  SqStable(metric-subspace(X;d;A))
Proof
Definitions occuring in Statement : 
metric-subspace: metric-subspace(X;d;A), 
metric: metric(X), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
metric-subspace: metric-subspace(X;d;A), 
member: t ∈ T, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
sq_stable: SqStable(P), 
squash: ↓T, 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
guard: {T}
Lemmas referenced : 
metric_wf, 
istype-universe, 
strong-subtype-iff-respects-equality, 
strong-subtype_wf, 
equal-wf, 
sq_stable__all, 
all_wf, 
meq_wf, 
sq_stable__implies, 
squash_wf, 
sq_stable__and, 
sq_stable__strong-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
instantiate, 
universeEquality, 
lambdaFormation_alt, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
functionEquality, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
imageElimination, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].    SqStable(metric-subspace(X;d;A))
 Date html generated: 
2019_10_30-AM-06_30_48
 Last ObjectModification: 
2019_10_02-AM-10_05_42
Theory : reals
Home
Index