Nuprl Lemma : arcsin-bounds
∀[a:{a:ℝ| a ∈ [r(-1), r1]} ]. (arcsin(a) ∈ [-(π/2), π/2])
Proof
Definitions occuring in Statement : 
arcsin: arcsin(a), 
halfpi: π/2, 
rccint: [l, u], 
i-member: r ∈ I, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
top: Top, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
uimplies: b supposing a
Lemmas referenced : 
arcsin_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
int-to-real_wf, 
member_rccint_lemma, 
istype-void, 
sq_stable__and, 
rleq_wf, 
rminus_wf, 
halfpi_wf, 
sq_stable__rleq, 
le_witness_for_triv
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
productElimination, 
setIsType, 
universeIsType, 
minusEquality, 
natural_numberEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
because_Cache, 
lambdaEquality_alt, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[a:\{a:\mBbbR{}|  a  \mmember{}  [r(-1),  r1]\}  ].  (arcsin(a)  \mmember{}  [-(\mpi{}/2),  \mpi{}/2])
Date html generated:
2019_10_31-AM-06_14_43
Last ObjectModification:
2019_05_21-PM-11_23_06
Theory : reals_2
Home
Index