Nuprl Lemma : arcsin0
arcsin(r0) = r0
Proof
Definitions occuring in Statement : 
arcsin: arcsin(a), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
member: t ∈ T, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
int-to-real: r(n), 
halfpi: π/2, 
divide: n ÷ m, 
cubic_converge: cubic_converge(b;m), 
ifthenelse: if b then t else f fi , 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
bfalse: ff, 
btrue: tt, 
fastpi: fastpi(n), 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
true: True, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
real: ℝ, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
int-to-real_wf, 
halfpi_wf, 
arcsin-unique, 
member_rccint_lemma, 
rleq-int, 
istype-false, 
rleq_wf, 
radd-preserves-rleq, 
rminus_wf, 
rleq_weakening_rless, 
rsin0, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMinus_wf, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
real_term_value_const_lemma
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberFormation_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
hypothesisEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
addEquality, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
productElimination, 
lambdaFormation_alt, 
because_Cache, 
productIsType, 
int_eqEquality
Latex:
arcsin(r0)  =  r0
Date html generated:
2019_10_31-AM-06_15_14
Last ObjectModification:
2019_05_24-PM-04_35_55
Theory : reals_2
Home
Index