Nuprl Lemma : derivative-rcos
d(rcos(x))/dx = λx.-(rsin(x)) on (-∞, ∞)
Proof
Definitions occuring in Statement : 
rcos: rcos(x), 
rsin: rsin(x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
riiint: (-∞, ∞), 
rminus: -(x)
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
and: P ∧ Q, 
uiff: uiff(P;Q), 
r-ap: f(x), 
all: ∀x:A. B[x], 
rfun-eq: rfun-eq(I;f;g), 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rfun: I ⟶ℝ, 
member: t ∈ T
Lemmas referenced : 
rsin-is-sine, 
rminus_functionality, 
rcos-is-cosine, 
req_functionality, 
derivative_functionality, 
set_wf, 
req_weakening, 
rsin_wf, 
sine_wf, 
rminus_wf, 
rcos_wf, 
i-member_wf, 
real_wf, 
cosine_wf, 
riiint_wf, 
derivative-cosine
Rules used in proof : 
productElimination, 
lambdaFormation, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
setEquality, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
sqequalRule, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut
Latex:
d(rcos(x))/dx  =  \mlambda{}x.-(rsin(x))  on  (-\minfty{},  \minfty{})
Date html generated:
2018_05_22-PM-02_58_40
Last ObjectModification:
2017_10_20-PM-00_05_43
Theory : reals_2
Home
Index