Nuprl Lemma : inv-sinh_wf

[x:ℝ]. (inv-sinh(x) ∈ ℝ)


Proof




Definitions occuring in Statement :  inv-sinh: inv-sinh(x) real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] inv-sinh: inv-sinh(x) and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  inv-sinh-domain ln_wf radd_wf rsqrt_wf rmul_wf int-to-real_wf rleq_wf real_wf req_wf rless_wf rlog_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule dependent_set_memberEquality isectElimination hypothesis natural_numberEquality productElimination applyEquality lambdaEquality setElimination rename setEquality productEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  (inv-sinh(x)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_04-PM-10_43_04
Last ObjectModification: 2017_06_24-AM-10_44_21

Theory : reals_2


Home Index