Nuprl Lemma : ln_wf
∀a:{a:ℝ| r0 < a} . (ln(a) ∈ {x:ℝ| x = rlog(a)} )
Proof
Definitions occuring in Statement : 
ln: ln(a), 
rlog: rlog(x), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
ln: ln(a), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
nat_plus: ℕ+, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
near-log_wf, 
rless_wf, 
int-to-real_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
log-from_wf, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
rleq_wf, 
rdiv_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
inhabitedIsType, 
productElimination, 
because_Cache, 
applyEquality, 
equalityIstype, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
setIsType
Latex:
\mforall{}a:\{a:\mBbbR{}|  r0  <  a\}  .  (ln(a)  \mmember{}  \{x:\mBbbR{}|  x  =  rlog(a)\}  )
Date html generated:
2019_10_31-AM-06_10_03
Last ObjectModification:
2019_01_28-AM-10_10_51
Theory : reals_2
Home
Index