Nuprl Lemma : rlog_wf

[x:{x:ℝr0 < x} ]. (rlog(x) ∈ ℝ)


Proof




Definitions occuring in Statement :  rlog: rlog(x) rless: x < y int-to-real: r(n) real: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q cand: c∧ B rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_stable: SqStable(P) top: Top rneq: x ≠ y guard: {T} or: P ∨ Q uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] rlog: rlog(x) rfun: I ⟶ℝ ifun: ifun(f;I) real-fun: real-fun(f;a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmin_strict_ub int-to-real_wf rless-int sq_stable__rless member_rccint_lemma rless_transitivity1 rmin_wf rless_wf rleq_wf rmax_wf real_wf set_wf rdiv_wf sq_stable__rleq i-member_wf rccint_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma req_functionality rdiv_functionality req_weakening req_wf ifun_wf rccint-icompact rmin-rleq-rmax integral_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis setElimination rename because_Cache productElimination independent_functionElimination sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed imageElimination isect_memberEquality voidElimination voidEquality lambdaFormation inrFormation independent_isectElimination productEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality dependent_set_memberEquality setEquality

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  <  x\}  ].  (rlog(x)  \mmember{}  \mBbbR{})



Date html generated: 2016_10_26-PM-00_27_06
Last ObjectModification: 2016_09_12-PM-05_44_14

Theory : reals_2


Home Index