Nuprl Lemma : rsin-pi
rsin(π) = r0
Proof
Definitions occuring in Statement : 
pi: π, 
rsin: rsin(x), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
req_int_terms: t1 ≡ t2, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top
Lemmas referenced : 
rsin-shift-pi, 
int-to-real_wf, 
rsin_wf, 
radd_wf, 
pi_wf, 
rminus_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMinus_wf, 
req_functionality, 
req_weakening, 
rminus_functionality, 
rsin0, 
rsin_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
sqequalRule, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination
Latex:
rsin(\mpi{})  =  r0
Date html generated:
2019_10_30-AM-11_43_50
Last ObjectModification:
2019_06_10-PM-05_28_14
Theory : reals_2
Home
Index