Nuprl Lemma : Kleisli-cat_wf

[C:SmallCategory]. ∀M:Monad(C). (Kl(C;M) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  Kleisli-cat: Kl(C;M) cat-monad: Monad(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] Kleisli-cat: Kl(C;M) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w,v.t[x; y; z; w; v]) so_apply: x[s1;s2;s3;s4;s5] uimplies: supposing a and: P ∧ Q cand: c∧ B squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-cat_wf cat-ob_wf cat-arrow_wf monad-fun_wf monad-unit_wf cat-comp_wf monad-extend_wf equal_wf squash_wf true_wf monad-unit-extend iff_weakening_equal monad-extend-unit cat-comp-ident cat-comp-assoc monad-extend-comp cat-monad_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache independent_isectElimination imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairFormation dependent_functionElimination axiomEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}M:Monad(C).  (Kl(C;M)  \mmember{}  SmallCategory)



Date html generated: 2017_10_05-AM-00_52_43
Last ObjectModification: 2017_07_28-AM-09_21_01

Theory : small!categories


Home Index