Nuprl Lemma : groupoid-map_wf
∀[G,H:Groupoid].  (groupoid-map(G;H) ∈ Type)
Proof
Definitions occuring in Statement : 
groupoid-map: groupoid-map(G;H)
, 
groupoid: Groupoid
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
groupoid-map: groupoid-map(G;H)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
cat-functor_wf, 
groupoid-cat_wf, 
cat-ob_wf, 
cat-arrow_wf, 
equal_wf, 
functor-ob_wf, 
functor-arrow_wf, 
groupoid-inv_wf, 
groupoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[G,H:Groupoid].    (groupoid-map(G;H)  \mmember{}  Type)
Date html generated:
2019_10_31-AM-07_24_52
Last ObjectModification:
2019_05_07-PM-06_01_58
Theory : small!categories
Home
Index