Nuprl Lemma : groupoid-map_wf

[G,H:Groupoid].  (groupoid-map(G;H) ∈ Type)


Proof




Definitions occuring in Statement :  groupoid-map: groupoid-map(G;H) groupoid: Groupoid uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T groupoid-map: groupoid-map(G;H) all: x:A. B[x] prop:
Lemmas referenced :  cat-functor_wf groupoid-cat_wf cat-ob_wf cat-arrow_wf equal_wf functor-ob_wf functor-arrow_wf groupoid-inv_wf groupoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[G,H:Groupoid].    (groupoid-map(G;H)  \mmember{}  Type)



Date html generated: 2019_10_31-AM-07_24_52
Last ObjectModification: 2019_05_07-PM-06_01_58

Theory : small!categories


Home Index