Nuprl Lemma : stable-element-predicate_wf

[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P:I:cat-ob(C) ⟶ (ob(F) I) ⟶ ℙ].
  (stable-element-predicate(C;F;I,rho.P[I;rho]) ∈ ℙ)


Proof




Definitions occuring in Statement :  stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B presheaf: Presheaf(C) uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_apply: x[s1;s2] top: Top cat-arrow: cat-arrow(C) pi1: fst(t) pi2: snd(t) type-cat: TypeCat so_apply: x[s] cat-ob: cat-ob(C)
Lemmas referenced :  all_wf cat-ob_wf cat-arrow_wf functor-ob_wf op-cat_wf small-category-subtype type-cat_wf subtype_rel-equal cat_ob_op_lemma functor-arrow_wf op-cat-arrow subtype_rel_self presheaf_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis lambdaEquality applyEquality hypothesisEquality instantiate independent_isectElimination dependent_functionElimination functionEquality functionExtensionality universeEquality isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (ob(F)  I)  {}\mrightarrow{}  \mBbbP{}].
    (stable-element-predicate(C;F;I,rho.P[I;rho])  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_50_54
Last ObjectModification: 2017_10_03-PM-03_11_33

Theory : small!categories


Home Index