Nuprl Lemma : stable-element-predicate_wf
∀[C:SmallCategory]. ∀[F:Presheaf(C)]. ∀[P:I:cat-ob(C) ⟶ (ob(F) I) ⟶ ℙ].
  (stable-element-predicate(C;F;I,rho.P[I;rho]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
, 
presheaf: Presheaf(C)
, 
functor-ob: ob(F)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
top: Top
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
so_apply: x[s]
, 
cat-ob: cat-ob(C)
Lemmas referenced : 
all_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor-ob_wf, 
op-cat_wf, 
small-category-subtype, 
type-cat_wf, 
subtype_rel-equal, 
cat_ob_op_lemma, 
functor-arrow_wf, 
op-cat-arrow, 
subtype_rel_self, 
presheaf_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:Presheaf(C)].  \mforall{}[P:I:cat-ob(C)  {}\mrightarrow{}  (ob(F)  I)  {}\mrightarrow{}  \mBbbP{}].
    (stable-element-predicate(C;F;I,rho.P[I;rho])  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_50_54
Last ObjectModification:
2017_10_03-PM-03_11_33
Theory : small!categories
Home
Index