Nuprl Lemma : unit-functor-is-const
∀[A:SmallCategory]. ∀f:Functor(1;A). ∃a:cat-ob(A). (f = const-functor(A;a) ∈ Functor(1;A))
Proof
Definitions occuring in Statement :
const-functor: const-functor(A;a)
,
cat-functor: Functor(C1;C2)
,
unit-cat: 1
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
unit: Unit
,
cat-ob: cat-ob(C)
,
pi1: fst(t)
,
unit-cat: 1
,
discrete-cat: discrete-cat(X)
,
mk-cat: mk-cat,
prop: ℙ
,
uimplies: b supposing a
,
cat-functor: Functor(C1;C2)
,
and: P ∧ Q
,
top: Top
,
const-functor: const-functor(A;a)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
it: ⋅
,
squash: ↓T
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
functor-ob_wf,
unit-cat_wf,
it_wf,
subtype_rel_self,
equal-wf-base,
equal-functors,
const-functor_wf,
cat_ob_pair_lemma,
cat_arrow_triple_lemma,
cat_comp_tuple_lemma,
cat_id_tuple_lemma,
ob_pair_lemma,
ob_mk_functor_lemma,
cat-ob_wf,
arrow_pair_lemma,
arrow_mk_functor_lemma,
cat-arrow_wf,
equal_wf,
cat-functor_wf,
small-category_wf,
equal-unit,
squash_wf,
true_wf,
unit_wf2,
cat-id_wf,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
dependent_pairFormation,
applyEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
sqequalRule,
intEquality,
baseClosed,
because_Cache,
independent_isectElimination,
setElimination,
rename,
productElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
equalityElimination,
lambdaEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
universeEquality,
functionExtensionality,
natural_numberEquality,
imageMemberEquality,
independent_functionElimination
Latex:
\mforall{}[A:SmallCategory]. \mforall{}f:Functor(1;A). \mexists{}a:cat-ob(A). (f = const-functor(A;a))
Date html generated:
2017_10_05-AM-00_47_31
Last ObjectModification:
2017_07_28-AM-09_19_43
Theory : small!categories
Home
Index