Nuprl Lemma : Sierpinski-equal-bottom
∀[x:ℕ ⟶ 𝔹]. uiff(x = ⊥ ∈ Sierpinski;x = ⊥ ∈ (ℕ ⟶ 𝔹))
Proof
Definitions occuring in Statement : 
Sierpinski: Sierpinski
, 
Sierpinski-bottom: ⊥
, 
nat: ℕ
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
Sierpinski: Sierpinski
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
iff_weakening_equal, 
member_wf, 
nat_wf, 
bool_wf, 
equal-wf-base, 
iff_wf, 
equal-wf-T-base, 
Sierpinski_wf, 
subtype-Sierpinski, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
applyEquality, 
lambdaEquality, 
imageElimination, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productEquality, 
functionEquality, 
functionExtensionality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  uiff(x  =  \mbot{};x  =  \mbot{})
Date html generated:
2019_10_31-AM-06_36_25
Last ObjectModification:
2017_07_28-AM-09_12_12
Theory : synthetic!topology
Home
Index