Nuprl Lemma : Sierpinski-equal-bottom

[x:ℕ ⟶ 𝔹]. uiff(x = ⊥ ∈ Sierpinski;x = ⊥ ∈ (ℕ ⟶ 𝔹))


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski Sierpinski-bottom: nat: bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a Sierpinski: Sierpinski quotient: x,y:A//B[x; y] cand: c∧ B iff: ⇐⇒ Q squash: T guard: {T} rev_implies:  Q implies:  Q true: True subtype_rel: A ⊆B prop:
Lemmas referenced :  equal_wf iff_weakening_equal member_wf nat_wf bool_wf equal-wf-base iff_wf equal-wf-T-base Sierpinski_wf subtype-Sierpinski equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution sqequalRule pertypeElimination productElimination thin applyEquality lambdaEquality imageElimination extract_by_obid isectElimination because_Cache hypothesis independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality hypothesisEquality baseClosed universeEquality independent_isectElimination productEquality functionEquality functionExtensionality independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  uiff(x  =  \mbot{};x  =  \mbot{})



Date html generated: 2019_10_31-AM-06_36_25
Last ObjectModification: 2017_07_28-AM-09_12_12

Theory : synthetic!topology


Home Index