Nuprl Lemma : nat-overt

Overt(ℕ)


Proof




Definitions occuring in Statement :  overt: Overt(X) nat:
Definitions unfolded in proof :  overt: Overt(X) uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] so_lambda: λ2x.t[x] Open: Open(X) so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q sp-le: x ≤ y guard: {T}
Lemmas referenced :  sp-lub_wf nat_wf Sierpinski_wf Open_wf all_wf sp-le_wf equal-wf-T-base iff_wf sp-lub-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule applyEquality hypothesisEquality independent_pairEquality hypothesis cumulativity functionEquality productEquality lambdaFormation independent_pairFormation productElimination dependent_functionElimination axiomEquality baseClosed because_Cache functionExtensionality independent_functionElimination

Latex:
Overt(\mBbbN{})



Date html generated: 2019_10_31-AM-07_19_09
Last ObjectModification: 2017_07_28-AM-09_12_24

Theory : synthetic!topology


Home Index