Nuprl Lemma : nat-overt
Overt(ℕ)
Proof
Definitions occuring in Statement : 
overt: Overt(X), 
nat: ℕ
Definitions unfolded in proof : 
overt: Overt(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
Open: Open(X), 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
sp-le: x ≤ y, 
guard: {T}
Lemmas referenced : 
sp-lub_wf, 
nat_wf, 
Sierpinski_wf, 
Open_wf, 
all_wf, 
sp-le_wf, 
equal-wf-T-base, 
iff_wf, 
sp-lub-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
universeEquality, 
dependent_pairFormation, 
lambdaEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
independent_pairEquality, 
hypothesis, 
cumulativity, 
functionEquality, 
productEquality, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
axiomEquality, 
baseClosed, 
because_Cache, 
functionExtensionality, 
independent_functionElimination
Latex:
Overt(\mBbbN{})
Date html generated:
2019_10_31-AM-07_19_09
Last ObjectModification:
2017_07_28-AM-09_12_24
Theory : synthetic!topology
Home
Index