Nuprl Lemma : sp-lub-property

[A:ℕ ⟶ Sierpinski]. ((∀n:ℕA[n] ≤ lub(n.A[n])) ∧ (∀c:Sierpinski. ((∀n:ℕA[n] ≤ c)  lub(n.A[n]) ≤ c)))


Proof




Definitions occuring in Statement :  sp-le: x ≤ y sp-lub: lub(n.A[n]) Sierpinski: Sierpinski nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] sp-le: x ≤ y iff: ⇐⇒ Q rev_implies:  Q not: ¬A exists: x:A. B[x] false: False
Lemmas referenced :  nat_wf all_wf sp-le_wf Sierpinski_wf equal-wf-T-base sp-lub_wf sp-lub-is-top not_wf exists_wf not-Sierpinski-bottom Sierpinski-unequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid hypothesis independent_pairFormation sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality productElimination independent_pairEquality dependent_functionElimination axiomEquality baseClosed because_Cache functionEquality independent_functionElimination dependent_pairFormation voidElimination equalitySymmetry equalityTransitivity

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Sierpinski]
    ((\mforall{}n:\mBbbN{}.  A[n]  \mleq{}  lub(n.A[n]))  \mwedge{}  (\mforall{}c:Sierpinski.  ((\mforall{}n:\mBbbN{}.  A[n]  \mleq{}  c)  {}\mRightarrow{}  lub(n.A[n])  \mleq{}  c)))



Date html generated: 2019_10_31-AM-06_36_23
Last ObjectModification: 2017_07_28-AM-09_12_11

Theory : synthetic!topology


Home Index