Nuprl Lemma : sp-lub-is-top

[A:ℕ ⟶ Sierpinski]. (lub(n.A[n]) = ⊤ ∈ Sierpinski ⇐⇒ ¬¬(∃n:ℕ(A[n] = ⊤ ∈ Sierpinski)))


Proof




Definitions occuring in Statement :  sp-lub: lub(n.A[n]) Sierpinski: Sierpinski Sierpinski-top: nat: uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  not_wf exists_wf nat_wf equal-wf-T-base Sierpinski_wf all_wf sp-lub-is-top1 sp-lub_wf iff_wf not-Sierpinski-top Sierpinski-unequal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality baseClosed because_Cache addLevel productElimination impliesFunctionality independent_pairEquality dependent_functionElimination axiomEquality functionEquality dependent_pairFormation equalitySymmetry equalityTransitivity

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  Sierpinski].  (lub(n.A[n])  =  \mtop{}  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\mneg{}(\mexists{}n:\mBbbN{}.  (A[n]  =  \mtop{})))



Date html generated: 2019_10_31-AM-06_36_20
Last ObjectModification: 2017_07_28-AM-09_12_10

Theory : synthetic!topology


Home Index