Nuprl Lemma : not-Sierpinski-bottom

[x:Sierpinski]. ((¬(x = ⊥ ∈ Sierpinski))  (x = ⊤ ∈ Sierpinski))


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski Sierpinski-top: Sierpinski-bottom: uall: [x:A]. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q Sierpinski: Sierpinski quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] not: ¬A prop: rev_implies:  Q false: False subtype_rel: A ⊆B
Lemmas referenced :  subtype-Sierpinski not_wf equal-wf-T-base equal-wf-base Sierpinski-top_wf two-class-equiv-rel Sierpinski-bottom_wf equal_wf iff_wf bool_wf nat_wf quotient-member-eq Sierpinski_wf Sierpinski-unequal-1
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin isect_memberFormation introduction lambdaFormation pointwiseFunctionalityForEquality hypothesis sqequalRule pertypeElimination isectElimination functionEquality lambdaEquality hypothesisEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation functionExtensionality voidElimination productEquality because_Cache baseClosed applyEquality axiomEquality

Latex:
\mforall{}[x:Sierpinski].  ((\mneg{}(x  =  \mbot{}))  {}\mRightarrow{}  (x  =  \mtop{}))



Date html generated: 2019_10_31-AM-06_35_31
Last ObjectModification: 2016_01_17-AM-09_36_00

Theory : synthetic!topology


Home Index