Nuprl Lemma : ml-filter_wf

[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[l:A List].  (ml-filter(P;l) ∈ List) supposing valueall-type(A) ∧ A


Proof




Definitions occuring in Statement :  ml-filter: ml-filter(P;L) list: List valueall-type: valueall-type(T) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x]
Lemmas referenced :  ml-filter-sq filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf list_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis independent_pairFormation cumulativity applyEquality because_Cache lambdaEquality setEquality setElimination rename lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality productEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[l:A  List].    (ml-filter(P;l)  \mmember{}  A  List)  supposing  valueall-type(A)  \mwedge{}  A



Date html generated: 2017_09_29-PM-05_50_59
Last ObjectModification: 2017_05_19-PM-02_20_15

Theory : ML


Home Index