Nuprl Lemma : free-from-atom-bool-subtype
∀[a:Atom1]. ∀[T:Type].  ∀[n:T]. a#n:T supposing T ⊆r 𝔹
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
true: True
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
subtype_rel_wf, 
true_wf, 
equal-wf-T-base, 
false_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
thin, 
extract_by_obid, 
lambdaFormation, 
because_Cache, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
freeFromAtomAxiom, 
isect_memberEquality, 
universeEquality, 
atomnEquality, 
freeFromAtomTriviality, 
baseClosed, 
natural_numberEquality
Latex:
\mforall{}[a:Atom1].  \mforall{}[T:Type].    \mforall{}[n:T].  a\#n:T  supposing  T  \msubseteq{}r  \mBbbB{}
Date html generated:
2017_04_14-AM-07_31_00
Last ObjectModification:
2017_02_27-PM-02_59_39
Theory : bool_1
Home
Index