Nuprl Lemma : free-from-atom-bool-subtype

[a:Atom1]. ∀[T:Type].  ∀[n:T]. a#n:T supposing T ⊆r 𝔹


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A true: True
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot subtype_rel_wf true_wf equal-wf-T-base false_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule thin extract_by_obid lambdaFormation because_Cache unionElimination equalityElimination isectElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination freeFromAtomAxiom isect_memberEquality universeEquality atomnEquality freeFromAtomTriviality baseClosed natural_numberEquality

Latex:
\mforall{}[a:Atom1].  \mforall{}[T:Type].    \mforall{}[n:T].  a\#n:T  supposing  T  \msubseteq{}r  \mBbbB{}



Date html generated: 2017_04_14-AM-07_31_00
Last ObjectModification: 2017_02_27-PM-02_59_39

Theory : bool_1


Home Index