Nuprl Lemma : ifthenelse-simplify0

[b:𝔹]. ∀[x,y:Top].  (if then x[b] else y[b] fi  if then x[tt] else y[ff] fi )


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bfalse: ff btrue: tt bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False
Lemmas referenced :  bool_wf eqtt_to_assert top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule sqequalAxiom isect_memberEquality because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination voidElimination

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[x,y:Top].    (if  b  then  x[b]  else  y[b]  fi    \msim{}  if  b  then  x[tt]  else  y[ff]  fi  )



Date html generated: 2017_04_14-AM-07_31_52
Last ObjectModification: 2017_02_27-PM-02_59_44

Theory : bool_1


Home Index