Nuprl Lemma : ifthenelse_functionality_wrt_uimplies

b1,b2:𝔹.
  ∀[p1,q1,p2,q2:ℙ].
    (b1 b2
     {q2 supposing q1}
     {p2 supposing p1}
     {if b2 then p2 else q2 fi  supposing if b1 then p1 else q1 fi })


Proof




Definitions occuring in Statement :  ifthenelse: if then else fi  bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] uall: [x:A]. B[x] implies:  Q uimplies: supposing a member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q true: True prop: rev_implies:  Q sq_type: SQType(T) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb false: False so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eqtt_to_assert subtype_base_sq bool_subtype_base iff_imp_equal_bool btrue_wf assert_wf true_wf eqff_to_assert equal_wf bool_wf bool_cases_sqequal assert_of_bnot ifthenelse_wf isect_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation cut hypothesisEquality thin because_Cache sqequalHypSubstitution unionElimination equalityElimination introduction extract_by_obid isectElimination hypothesis productElimination independent_isectElimination instantiate independent_pairFormation natural_numberEquality dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp voidElimination cumulativity universeEquality lambdaEquality

Latex:
\mforall{}b1,b2:\mBbbB{}.
    \mforall{}[p1,q1,p2,q2:\mBbbP{}].
        (b1  =  b2
        {}\mRightarrow{}  \{q2  supposing  q1\}
        {}\mRightarrow{}  \{p2  supposing  p1\}
        {}\mRightarrow{}  \{if  b2  then  p2  else  q2  fi    supposing  if  b1  then  p1  else  q1  fi  \})



Date html generated: 2017_04_14-AM-07_29_54
Last ObjectModification: 2017_02_27-PM-02_58_29

Theory : bool_1


Home Index