Nuprl Lemma : not-assert-bdd-all

n:ℕ. ∀P:ℕn ⟶ 𝔹.  (¬↑bdd-all(n;i.P[i]) ⇐⇒ ∃i:ℕn. (¬↑P[i]))


Proof




Definitions occuring in Statement :  bdd-all: bdd-all(n;i.P[i]) int_seg: {i..j-} nat: assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  guard: {T} or: P ∨ Q decidable: Dec(P) exists: x:A. B[x] false: False not: ¬A rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] nat: uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  decidable__assert decidable__not decidable__exists_int_seg iff_wf bdd-all_wf assert-bdd-all nat_wf bool_wf exists_wf assert_wf int_seg_wf all_wf not_wf
Rules used in proof :  dependent_pairFormation unionElimination instantiate impliesLevelFunctionality dependent_functionElimination impliesFunctionality productElimination allFunctionality addLevel functionEquality voidElimination independent_functionElimination because_Cache functionExtensionality applyEquality lambdaEquality sqequalRule hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cut

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    (\mneg{}\muparrow{}bdd-all(n;i.P[i])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (\mneg{}\muparrow{}P[i]))



Date html generated: 2017_09_29-PM-05_47_59
Last ObjectModification: 2017_09_06-AM-11_35_31

Theory : bool_1


Home Index