Nuprl Lemma : in-bar-converges

[T:Type]. ∀[b,a:T].  (in-bar(a)↓⇐⇒ b ∈ T)


Proof




Definitions occuring in Statement :  bar-converges: x↓a in-bar: in-bar(b) uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] bar-converges: x↓a exists: x:A. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: bar-val: bar-val(n;x) in-bar: in-bar(b) iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  false_wf le_wf unit_wf2 equal_wf bar-val_wf in-bar_wf bar-converges-unique bar-converges_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality inlEquality unionEquality cumulativity because_Cache independent_functionElimination equalitySymmetry universeEquality hyp_replacement applyEquality lambdaEquality setElimination rename productElimination setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b,a:T].    (in-bar(a)\mdownarrow{}b  \mLeftarrow{}{}\mRightarrow{}  a  =  b)



Date html generated: 2016_10_21-AM-09_47_34
Last ObjectModification: 2016_07_12-AM-05_07_42

Theory : co-recursion


Home Index