Nuprl Lemma : pcw-consistent-steps_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
[s1,s2:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
  (pcw-consistent-steps(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];s1;s2) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-consistent-steps: pcw-consistent-steps(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];s1;s2) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) pcw-consistent-steps: pcw-consistent-steps(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];s1;s2) spreadn: spread3 prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) ext-family: F ≡ G all: x:A. B[x] guard: {T} uimplies: supposing a implies:  Q ext-eq: A ≡ B pi2: snd(t) pi1: fst(t)
Lemmas referenced :  param-co-W_wf equal_wf param-co-W-ext subtype_rel_weakening equal_functionality_wrt_subtype_rel2 assert_wf isl_wf unit_wf2 subtype_rel_union subtype_rel-equal pcw-step_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination sqequalRule productEquality cumulativity applyEquality because_Cache lambdaEquality functionExtensionality dependent_functionElimination functionEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination hypothesis_subsumption applyLambdaEquality unionEquality axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[s1,s2:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
    (pcw-consistent-steps(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];s1;s2)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_42_00
Last ObjectModification: 2017_02_27-PM-03_13_56

Theory : co-recursion


Home Index