Nuprl Lemma : stuck-decide
∀[a:Base]
  (∀[F,H:Top].  (case a of inl(x) => F[x] | inr(x) => H[x] ~ eval x = a in ⊥)) supposing 
     ((∀b,c:Base.  (if a is inl then b else c ~ c)) and 
     (∀b,c:Base.  (if a is inr then b else c ~ c)))
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
callbyvalue: callbyvalue, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
isinr: isinr def, 
isinl: isinl def, 
all: ∀x:A. B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
isl: isl(x)
, 
assert: ↑b
, 
outl: outl(x)
, 
not: ¬A
, 
false: False
, 
bfalse: ff
, 
outr: outr(x)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
base_wf, 
all_wf, 
exception-not-bottom, 
bottom_diverge, 
is-exception_wf, 
has-value_wf_base, 
assert_of_bnot, 
eqff_to_assert, 
not-btrue-sqeq-bfalse, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
top_wf, 
isl_wf, 
injection-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueDecide, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
because_Cache, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
baseClosed, 
promote_hyp, 
voidElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
sqequalAxiom, 
isect_memberEquality, 
lambdaEquality, 
sqequalIntensionalEquality
Latex:
\mforall{}[a:Base]
    (\mforall{}[F,H:Top].    (case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  H[x]  \msim{}  eval  x  =  a  in  \mbot{}))  supposing 
          ((\mforall{}b,c:Base.    (if  a  is  inl  then  b  else  c  \msim{}  c))  and 
          (\mforall{}b,c:Base.    (if  a  is  inr  then  b  else  c  \msim{}  c)))
Date html generated:
2016_05_13-PM-03_44_56
Last ObjectModification:
2016_01_14-PM-07_06_31
Theory : computation
Home
Index