Nuprl Lemma : eq-finite-seqs_wf

[a,b:ℕ ⟶ ℕ]. ∀[x:ℕ].  (eq-finite-seqs(a;b;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq-finite-seqs: eq-finite-seqs(a;b;x) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  bfalse: ff prop: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  band: p ∧b q btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] eq-finite-seqs: eq-finite-seqs(a;b;x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf equal_wf false_wf int_seg_subtype_nat nat_wf eq_int_wf eqtt_to_assert btrue_wf bool_wf primrec_wf
Rules used in proof :  functionEquality isect_memberEquality axiomEquality independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity because_Cache independent_pairFormation rename setElimination natural_numberEquality functionExtensionality applyEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation lambdaEquality hypothesisEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[x:\mBbbN{}].    (eq-finite-seqs(a;b;x)  \mmember{}  \mBbbB{})



Date html generated: 2017_04_20-AM-07_37_06
Last ObjectModification: 2017_04_18-AM-10_47_27

Theory : continuity


Home Index