Nuprl Lemma : eq-finite-seqs_wf
∀[a,b:ℕ ⟶ ℕ]. ∀[x:ℕ].  (eq-finite-seqs(a;b;x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq-finite-seqs: eq-finite-seqs(a;b;x), 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
bfalse: ff, 
prop: ℙ, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
eq-finite-seqs: eq-finite-seqs(a;b;x), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_wf, 
equal_wf, 
false_wf, 
int_seg_subtype_nat, 
nat_wf, 
eq_int_wf, 
eqtt_to_assert, 
btrue_wf, 
bool_wf, 
primrec_wf
Rules used in proof : 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
independent_pairFormation, 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[x:\mBbbN{}].    (eq-finite-seqs(a;b;x)  \mmember{}  \mBbbB{})
Date html generated:
2017_04_20-AM-07_37_06
Last ObjectModification:
2017_04_18-AM-10_47_27
Theory : continuity
Home
Index