Nuprl Lemma : general-fan-theorem-troelstra-sq

X:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ((∀f:ℕ ⟶ 𝔹. ⇃(∃n:ℕX[n;f]))  ⇃(∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. X[n;f]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] so_lambda: λ2y.t[x; y] int_seg: {i..j-} guard: {T}
Lemmas referenced :  general-fan-theorem-troelstra implies-quotient-true prop-truncation-quot axiom-choice-C0 equiv_rel_true true_wf subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf subtype_rel_dep_function exists_wf quotient_wf bool_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis sqequalRule lambdaEquality because_Cache applyEquality hypothesisEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation cumulativity universeEquality dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation

Latex:
\mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}n:\mBbbN{}.  X[n;f]))  {}\mRightarrow{}  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  X[n;f]))



Date html generated: 2016_05_14-PM-09_54_06
Last ObjectModification: 2016_02_04-PM-03_55_09

Theory : continuity


Home Index