Nuprl Lemma : axiom-choice-C0
∀P:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ. ((∀f:ℕ ⟶ 𝔹. ⇃(∃m:ℕ. (P m f))) 
⇒ ⇃(∃F:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f:ℕ ⟶ 𝔹. (P (F f) f)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
pi1: fst(t)
Lemmas referenced : 
equal_wf, 
implies-quotient-true, 
nat-retractible, 
bool_subtype_base, 
int-value-type, 
set-value-type, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
canonicalizable-function, 
canonicalizable_wf, 
implies-prop-truncation, 
all-quotient-true, 
equiv_rel_true, 
true_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_dep_function, 
exists_wf, 
quotient_wf, 
bool_wf, 
nat_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
intEquality, 
promote_hyp, 
dependent_pairFormation, 
introduction, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}P:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}m:\mBbbN{}.  (P  m  f)))  {}\mRightarrow{}  \00D9(\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (P  (F  f)  f)))
Date html generated:
2016_05_14-PM-09_42_27
Last ObjectModification:
2016_02_04-PM-03_51_42
Theory : continuity
Home
Index