Nuprl Lemma : axiom-choice-C0

P:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ((∀f:ℕ ⟶ 𝔹. ⇃(∃m:ℕ(P f)))  ⇃(∃F:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f:ℕ ⟶ 𝔹(P (F f) f)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A exists: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q cand: c∧ B guard: {T} pi1: fst(t)
Lemmas referenced :  equal_wf implies-quotient-true nat-retractible bool_subtype_base int-value-type set-value-type int_subtype_base le_wf set_subtype_base canonicalizable-function canonicalizable_wf implies-prop-truncation all-quotient-true equiv_rel_true true_wf subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf subtype_rel_dep_function exists_wf quotient_wf bool_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis sqequalRule lambdaEquality because_Cache applyEquality hypothesisEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation cumulativity universeEquality dependent_functionElimination independent_functionElimination productElimination intEquality promote_hyp dependent_pairFormation introduction equalityTransitivity equalitySymmetry

Latex:
\mforall{}P:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}m:\mBbbN{}.  (P  m  f)))  {}\mRightarrow{}  \00D9(\mexists{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (P  (F  f)  f)))



Date html generated: 2016_05_14-PM-09_42_27
Last ObjectModification: 2016_02_04-PM-03_51_42

Theory : continuity


Home Index