Nuprl Lemma : nat2int_wf
∀[n:ℕ]. (nat2int(n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat2int: nat2int(m), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat2int: nat2int(m), 
nat: ℕ, 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
false: False, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
remainderEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
closedConclusion, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
instantiate, 
extract_by_obid, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
Error :equalityIstype, 
baseClosed, 
sqequalBase, 
Error :inhabitedIsType, 
unionElimination, 
equalityElimination, 
productElimination, 
int_eqReduceTrueSq, 
divideEquality, 
Error :dependent_pairFormation_alt, 
hypothesisEquality, 
promote_hyp, 
int_eqReduceFalseSq, 
minusEquality, 
addEquality, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (nat2int(n)  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-PM-02_52_11
Last ObjectModification:
2019_02_06-PM-06_50_24
Theory : continuity
Home
Index