Nuprl Lemma : finite-type-list

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀L:T List. finite-type({x:T| (x ∈ L)} )))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cardinality-le-finite l_member_wf length_wf_nat list_wf all_wf decidable_wf equal_wf cardinality-le-list-set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality universeEquality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L:T  List.  finite-type(\{x:T|  (x  \mmember{}  L)\}  )))



Date html generated: 2016_05_14-PM-03_31_44
Last ObjectModification: 2015_12_26-PM-06_01_41

Theory : decidable!equality


Home Index