Nuprl Lemma : list-index-cmp_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[A:Type]. ∀[f:A ⟶ T].
  (list-index-cmp(eq;L;f) ∈ comparison({x:A| (f x ∈ L)} ))


Proof




Definitions occuring in Statement :  list-index-cmp: list-index-cmp(eq;L;f) comparison: comparison(T) l_member: (x ∈ l) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-index-cmp: list-index-cmp(eq;L;f) prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-} top: Top iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  int-minus-comparison_wf l_member_wf outl_wf top_wf list-index_wf subtype_rel_union int_seg_wf length_wf isl-list-index list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality applyEquality hypothesis lambdaEquality lambdaFormation setElimination rename intEquality natural_numberEquality because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality dependent_functionElimination productElimination independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].
    (list-index-cmp(eq;L;f)  \mmember{}  comparison(\{x:A|  (f  x  \mmember{}  L)\}  ))



Date html generated: 2016_05_14-PM-03_30_38
Last ObjectModification: 2015_12_26-PM-06_02_33

Theory : decidable!equality


Home Index