Nuprl Lemma : list-index-cmp_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[A:Type]. ∀[f:A ⟶ T].
  (list-index-cmp(eq;L;f) ∈ comparison({x:A| (f x ∈ L)} ))
Proof
Definitions occuring in Statement : 
list-index-cmp: list-index-cmp(eq;L;f)
, 
comparison: comparison(T)
, 
l_member: (x ∈ l)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list-index-cmp: list-index-cmp(eq;L;f)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
int-minus-comparison_wf, 
l_member_wf, 
outl_wf, 
top_wf, 
list-index_wf, 
subtype_rel_union, 
int_seg_wf, 
length_wf, 
isl-list-index, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
intEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].
    (list-index-cmp(eq;L;f)  \mmember{}  comparison(\{x:A|  (f  x  \mmember{}  L)\}  ))
Date html generated:
2016_05_14-PM-03_30_38
Last ObjectModification:
2015_12_26-PM-06_02_33
Theory : decidable!equality
Home
Index