Nuprl Lemma : member-count-repeats3
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T]. ∀[n:ℕ+].
  n = ||filter(λy.(eq y x);L)|| ∈ ℤ supposing (<x, n> ∈ count-repeats(L,eq))
Proof
Definitions occuring in Statement : 
count-repeats: count-repeats(L,eq), 
l_member: (x ∈ l), 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
deq: EqDecider(T), 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
pair: <a, b>, 
product: x:A × B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
prop: ℙ, 
all: ∀x:A. B[x], 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
nat_plus: ℕ+, 
deq: EqDecider(T)
Lemmas referenced : 
l_member_wf, 
nat_plus_wf, 
count-repeats_wf, 
list_wf, 
deq_wf, 
member-count-repeats2, 
lelt_wf, 
length_wf, 
equal_wf, 
filter_wf5
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
independent_pairEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
hyp_replacement, 
Error :applyLambdaEquality, 
spreadEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].  \mforall{}[n:\mBbbN{}\msupplus{}].
    n  =  ||filter(\mlambda{}y.(eq  y  x);L)||  supposing  (<x,  n>  \mmember{}  count-repeats(L,eq))
Date html generated:
2016_10_21-AM-10_37_54
Last ObjectModification:
2016_07_12-AM-05_48_57
Theory : decidable!equality
Home
Index