Nuprl Lemma : round-robin_wf
∀[T:Type]. ∀[L:T List].  round-robin(L) ∈ ℕ ⟶ T supposing 0 < ||L||
Proof
Definitions occuring in Statement : 
round-robin: round-robin(L)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
round-robin: round-robin(L)
, 
nat: ℕ
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
Lemmas referenced : 
list_wf, 
nat_wf, 
less_than_wf, 
rem_bounds_1, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
length_wf, 
select_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
remainderEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
productElimination, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    round-robin(L)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  T  supposing  0  <  ||L||
Date html generated:
2016_05_14-PM-03_30_48
Last ObjectModification:
2016_01_14-PM-11_20_54
Theory : decidable!equality
Home
Index