Nuprl Lemma : round-robin_wf

[T:Type]. ∀[L:T List].  round-robin(L) ∈ ℕ ⟶ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  round-robin: round-robin(L) length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a round-robin: round-robin(L) nat: nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: nat_plus: +
Lemmas referenced :  list_wf nat_wf less_than_wf rem_bounds_1 equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties length_wf select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality remainderEquality setElimination rename hypothesis because_Cache lambdaFormation equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality productElimination axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    round-robin(L)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  T  supposing  0  <  ||L||



Date html generated: 2016_05_14-PM-03_30_48
Last ObjectModification: 2016_01_14-PM-11_20_54

Theory : decidable!equality


Home Index