Nuprl Lemma : assert-union-deq

[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)]. ∀[x,y:A B].  uiff(↑(union-deq(A;B;a;b) y);x y ∈ (A B))


Proof




Definitions occuring in Statement :  union-deq: union-deq(A;B;a;b) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B deq: EqDecider(T) implies:  Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf iff_weakening_uiff assert_wf union-deq_wf deq_wf assert-deq assert_witness uiff_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache addLevel productElimination independent_isectElimination applyEquality lambdaEquality setElimination rename sqequalRule independent_functionElimination universeEquality independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].  \mforall{}[x,y:A  +  B].
    uiff(\muparrow{}(union-deq(A;B;a;b)  x  y);x  =  y)



Date html generated: 2017_04_14-AM-07_39_22
Last ObjectModification: 2017_02_27-PM-03_11_14

Theory : equality!deciders


Home Index