Nuprl Lemma : assert-union-deq
∀[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)]. ∀[x,y:A + B].  uiff(↑(union-deq(A;B;a;b) x y);x = y ∈ (A + B))
Proof
Definitions occuring in Statement : 
union-deq: union-deq(A;B;a;b)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
iff_weakening_uiff, 
assert_wf, 
union-deq_wf, 
deq_wf, 
assert-deq, 
assert_witness, 
uiff_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_functionElimination, 
universeEquality, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].  \mforall{}[x,y:A  +  B].
    uiff(\muparrow{}(union-deq(A;B;a;b)  x  y);x  =  y)
Date html generated:
2017_04_14-AM-07_39_22
Last ObjectModification:
2017_02_27-PM-03_11_14
Theory : equality!deciders
Home
Index