Nuprl Lemma : equipollent-quotient

[A:Type]. ∀E:A ⟶ A ⟶ 𝔹a:x,y:A//(↑E[x;y]) × {b:A| ↑E[a;b]}  supposing EquivRel(A;x,y.↑E[x;y])


Proof




Definitions occuring in Statement :  equipollent: B equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) so_apply: x[s1;s2] implies:  Q sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2y.t[x; y] prop: guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True sq_type: SQType(T) equipollent: B exists: x:A. B[x] subtype_rel: A ⊆B biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) pi2: snd(t) squash: T istype: istype(T)
Lemmas referenced :  assert_witness bool_wf iff_imp_equal_bool istype-assert quotient_wf assert_wf equiv_rel_wf istype-universe btrue_wf true_wf subtype_base_sq bool_subtype_base subtype_quotient equal_wf squash_wf quotient-member-eq subtype_rel_self biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality Error :lambdaEquality_alt,  dependent_functionElimination hypothesisEquality extract_by_obid isectElimination applyEquality independent_functionElimination hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename Error :functionExtensionality_alt,  pointwiseFunctionalityForEquality functionEquality pertypeElimination promote_hyp because_Cache independent_isectElimination independent_pairFormation equalityTransitivity equalitySymmetry Error :productIsType,  Error :equalityIstype,  sqequalBase Error :universeIsType,  Error :functionIsType,  instantiate universeEquality natural_numberEquality cumulativity Error :dependent_pairFormation_alt,  Error :setIsType,  Error :dependent_set_memberEquality_alt,  Error :dependent_pairEquality_alt,  applyLambdaEquality setElimination pointwiseFunctionality Error :equalityIsType4,  imageElimination imageMemberEquality baseClosed productEquality setEquality

Latex:
\mforall{}[A:Type].  \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  A  \msim{}  a:x,y:A//(\muparrow{}E[x;y])  \mtimes{}  \{b:A|  \muparrow{}E[a;b]\}    supposing  EquivRel(A;x,y.\muparrow{}E[x;y]\000C)



Date html generated: 2019_06_20-PM-02_17_35
Last ObjectModification: 2018_11_25-PM-01_28_18

Theory : equipollence!!cardinality!


Home Index