Nuprl Lemma : equipollent-quotient
∀[A:Type]. ∀E:A ⟶ A ⟶ 𝔹. A ~ a:x,y:A//(↑E[x;y]) × {b:A| ↑E[a;b]}  supposing EquivRel(A;x,y.↑E[x;y])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
sq_type: SQType(T)
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
pi2: snd(t)
, 
squash: ↓T
, 
istype: istype(T)
Lemmas referenced : 
assert_witness, 
bool_wf, 
iff_imp_equal_bool, 
istype-assert, 
quotient_wf, 
assert_wf, 
equiv_rel_wf, 
istype-universe, 
btrue_wf, 
true_wf, 
subtype_base_sq, 
bool_subtype_base, 
subtype_quotient, 
equal_wf, 
squash_wf, 
quotient-member-eq, 
subtype_rel_self, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
rename, 
Error :functionExtensionality_alt, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
promote_hyp, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
Error :productIsType, 
Error :equalityIstype, 
sqequalBase, 
Error :universeIsType, 
Error :functionIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
cumulativity, 
Error :dependent_pairFormation_alt, 
Error :setIsType, 
Error :dependent_set_memberEquality_alt, 
Error :dependent_pairEquality_alt, 
applyLambdaEquality, 
setElimination, 
pointwiseFunctionality, 
Error :equalityIsType4, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productEquality, 
setEquality
Latex:
\mforall{}[A:Type].  \mforall{}E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  A  \msim{}  a:x,y:A//(\muparrow{}E[x;y])  \mtimes{}  \{b:A|  \muparrow{}E[a;b]\}    supposing  EquivRel(A;x,y.\muparrow{}E[x;y]\000C)
Date html generated:
2019_06_20-PM-02_17_35
Last ObjectModification:
2018_11_25-PM-01_28_18
Theory : equipollence!!cardinality!
Home
Index