Nuprl Lemma : equipollent-union-product

[A,B,C:Type].  B × A × (B × C)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) surject: Surj(A;B;f) pi1: fst(t) outl: outl(x) uimplies: supposing a isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) not: ¬A false: False outr: outr(x) bnot: ¬bb bfalse: ff
Lemmas referenced :  equal_wf biject_wf and_wf outl_wf assert_wf isl_wf pi1_wf pi2_wf btrue_wf bfalse_wf btrue_neq_bfalse outr_wf bnot_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_pairFormation lambdaEquality spreadEquality hypothesisEquality cut equalityTransitivity hypothesis equalitySymmetry thin unionEquality lambdaFormation unionElimination sqequalRule inlEquality independent_pairEquality productEquality inrEquality introduction extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination independent_functionElimination independent_pairFormation universeEquality productElimination dependent_set_memberEquality applyLambdaEquality setElimination rename independent_isectElimination promote_hyp hyp_replacement natural_numberEquality voidEquality voidElimination

Latex:
\mforall{}[A,B,C:Type].    A  +  B  \mtimes{}  C  \msim{}  A  \mtimes{}  C  +  (B  \mtimes{}  C)



Date html generated: 2019_06_20-PM-02_16_59
Last ObjectModification: 2018_08_21-PM-01_55_51

Theory : equipollence!!cardinality!


Home Index