Nuprl Lemma : empty-fset-contains-none

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].  (↑fset-contains-none(eq;{};x.Cs[x]))


Proof




Definitions occuring in Statement :  fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) empty-fset: {} fset: fset(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a all: x:A. B[x] implies:  Q not: ¬A false: False fset-member: a ∈ s assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind empty-fset: {} nil: [] it: bfalse: ff prop:
Lemmas referenced :  assert-fset-contains-none empty-fset_wf f-subset_wf fset-member_wf fset_wf deq-fset_wf fset-contains-none_wf deq_wf assert_witness
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality productElimination independent_isectElimination lambdaFormation independent_functionElimination voidElimination because_Cache functionEquality universeEquality isect_memberFormation introduction isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].    (\muparrow{}fset-contains-none(eq;\{\};x.Cs[x]))



Date html generated: 2016_05_14-PM-03_42_24
Last ObjectModification: 2015_12_26-PM-06_39_39

Theory : finite!sets


Home Index