Nuprl Lemma : fset-filter_wf2

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  ({x ∈ P[x]} ∈ fset({x:T| ↑P[x]} ))


Proof




Definitions occuring in Statement :  fset-filter: {x ∈ P[x]} fset: fset(T) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) so_apply: x[s] prop: quotient: x,y:A//B[x; y] and: P ∧ Q fset-filter: {x ∈ P[x]} all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset_wf assert_wf filter_type list_wf quotient-member-eq set-equal_wf set-equal-equiv filter_wf3 member-filter l_member_wf iff_wf equal-wf-base bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality lemma_by_obid isectElimination thin setEquality hypothesisEquality applyEquality hypothesis sqequalRule pertypeElimination productElimination lambdaFormation lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination setElimination rename addLevel independent_pairFormation impliesFunctionality equalityTransitivity equalitySymmetry because_Cache productEquality cumulativity axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    (\{x  \mmember{}  s  |  P[x]\}  \mmember{}  fset(\{x:T|  \muparrow{}P[x]\}  ))



Date html generated: 2016_05_14-PM-03_39_23
Last ObjectModification: 2015_12_26-PM-06_41_40

Theory : finite!sets


Home Index