Nuprl Lemma : fset-filter_wf2
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  ({x ∈ s | P[x]} ∈ fset({x:T| ↑P[x]} ))
Proof
Definitions occuring in Statement : 
fset-filter: {x ∈ s | P[x]}
, 
fset: fset(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
so_apply: x[s]
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
fset-filter: {x ∈ s | P[x]}
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset_wf, 
assert_wf, 
filter_type, 
list_wf, 
quotient-member-eq, 
set-equal_wf, 
set-equal-equiv, 
filter_wf3, 
member-filter, 
l_member_wf, 
iff_wf, 
equal-wf-base, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
lambdaFormation, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
productEquality, 
cumulativity, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    (\{x  \mmember{}  s  |  P[x]\}  \mmember{}  fset(\{x:T|  \muparrow{}P[x]\}  ))
Date html generated:
2016_05_14-PM-03_39_23
Last ObjectModification:
2015_12_26-PM-06_41_40
Theory : finite!sets
Home
Index