Nuprl Lemma : lt_int_eq_false_elim

[i,j:ℤ].  ¬i < supposing i <ff


Proof




Definitions occuring in Statement :  lt_int: i <j bfalse: ff bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] not: ¬A int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop: le: A ≤ B and: P ∧ Q guard: {T} uiff: uiff(P;Q)
Lemmas referenced :  less_than_wf equal_wf bool_wf lt_int_wf bfalse_wf assert_wf le_int_wf le_wf bnot_wf less_than_transitivity1 less_than_irreflexivity uiff_transitivity eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination lemma_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality equalityTransitivity equalitySymmetry intEquality productElimination independent_isectElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    \mneg{}i  <  j  supposing  i  <z  j  =  ff



Date html generated: 2016_05_13-PM-04_01_57
Last ObjectModification: 2015_12_26-AM-10_56_51

Theory : int_1


Home Index