Nuprl Lemma : lt_int_eq_false_elim
∀[i,j:ℤ].  ¬i < j supposing i <z j = ff
Proof
Definitions occuring in Statement : 
lt_int: i <z j
, 
bfalse: ff
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
Lemmas referenced : 
less_than_wf, 
equal_wf, 
bool_wf, 
lt_int_wf, 
bfalse_wf, 
assert_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
uiff_transitivity, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].    \mneg{}i  <  j  supposing  i  <z  j  =  ff
Date html generated:
2016_05_13-PM-04_01_57
Last ObjectModification:
2015_12_26-AM-10_56_51
Theory : int_1
Home
Index