Nuprl Lemma : divide-and-conquer-ext

[Q:a:ℤ ⟶ {a...} ⟶ ℙ]
  ∀s:{2...}
    ((∀a:ℤ. ∀b:{a..a s-}.  Q[a;b])
     (∀a,b,c:ℤ.  (Q[a;c]  Q[a;b]) ∨ (Q[c;b]  Q[a;b]) supposing a < c ∧ c < b)
     (∀a:ℤ. ∀b:{a...}.  Q[a;b]))


Proof




Definitions occuring in Statement :  int_upper: {i...} int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T subtract: m genrec-ap: genrec-ap divide-and-conquer uniform-comp-nat-induction decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable any: any x iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  divide-and-conquer lifting-strict-decide istype-void strict4-decide lifting-strict-less uniform-comp-nat-induction decidable__lt decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[Q:a:\mBbbZ{}  {}\mrightarrow{}  \{a...\}  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}s:\{2...\}
        ((\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a..a  +  s\msupminus{}\}.    Q[a;b])
        {}\mRightarrow{}  (\mforall{}a,b,c:\mBbbZ{}.    (Q[a;c]  {}\mRightarrow{}  Q[a;b])  \mvee{}  (Q[c;b]  {}\mRightarrow{}  Q[a;b])  supposing  a  <  c  \mwedge{}  c  <  b)
        {}\mRightarrow{}  (\mforall{}a:\mBbbZ{}.  \mforall{}b:\{a...\}.    Q[a;b]))



Date html generated: 2019_06_20-PM-01_15_43
Last ObjectModification: 2019_03_12-PM-09_29_39

Theory : int_2


Home Index