Nuprl Lemma : imin_add_r
∀[a,b,c:ℤ]. ((imin(a;b) + c) = imin(a + c;b + c) ∈ ℤ)
Proof
Definitions occuring in Statement :
imin: imin(a;b)
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
top: Top
,
true: True
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
prop: ℙ
Lemmas referenced :
minus_mono_wrt_eq,
imin_wf,
minus-add,
minus-one-mul,
add-commutes,
imax_wf,
equal_wf,
imax_add_r,
iff_weakening_equal,
add_com,
squash_wf,
true_wf,
add_functionality_wrt_eq,
minus_imin
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
addEquality,
hypothesisEquality,
hypothesis,
productElimination,
independent_isectElimination,
intEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
voidElimination,
voidEquality,
multiplyEquality,
minusEquality,
natural_numberEquality,
applyEquality,
lambdaEquality,
imageElimination,
imageMemberEquality,
baseClosed,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
universeEquality
Latex:
\mforall{}[a,b,c:\mBbbZ{}]. ((imin(a;b) + c) = imin(a + c;b + c))
Date html generated:
2017_04_14-AM-09_14_42
Last ObjectModification:
2017_02_27-PM-03_51_55
Theory : int_2
Home
Index