Nuprl Lemma : imin_add_r

[a,b,c:ℤ].  ((imin(a;b) c) imin(a c;b c) ∈ ℤ)


Proof




Definitions occuring in Statement :  imin: imin(a;b) uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a top: Top true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  minus_mono_wrt_eq imin_wf minus-add minus-one-mul add-commutes imax_wf equal_wf imax_add_r iff_weakening_equal add_com squash_wf true_wf add_functionality_wrt_eq minus_imin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin addEquality hypothesisEquality hypothesis productElimination independent_isectElimination intEquality sqequalRule isect_memberEquality axiomEquality because_Cache voidElimination voidEquality multiplyEquality minusEquality natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination universeEquality

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((imin(a;b)  +  c)  =  imin(a  +  c;b  +  c))



Date html generated: 2017_04_14-AM-09_14_42
Last ObjectModification: 2017_02_27-PM-03_51_55

Theory : int_2


Home Index