Nuprl Lemma : imin_add_r
∀[a,b,c:ℤ].  ((imin(a;b) + c) = imin(a + c;b + c) ∈ ℤ)
Proof
Definitions occuring in Statement : 
imin: imin(a;b)
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
minus_mono_wrt_eq, 
imin_wf, 
minus-add, 
minus-one-mul, 
add-commutes, 
imax_wf, 
equal_wf, 
imax_add_r, 
iff_weakening_equal, 
add_com, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
minus_imin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
multiplyEquality, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((imin(a;b)  +  c)  =  imin(a  +  c;b  +  c))
Date html generated:
2017_04_14-AM-09_14_42
Last ObjectModification:
2017_02_27-PM-03_51_55
Theory : int_2
Home
Index