Nuprl Lemma : imax_add_r

[a,b,c:ℤ].  ((imax(a;b) c) imax(a c;b c) ∈ ℤ)


Proof




Definitions occuring in Statement :  imax: imax(a;b) uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  imax: imax(a;b) uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  value-type-has-value int-value-type le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf satisfiable-full-omega-tt intformand_wf intformle_wf itermVar_wf intformnot_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis addEquality hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination natural_numberEquality lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll axiomEquality

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((imax(a;b)  +  c)  =  imax(a  +  c;b  +  c))



Date html generated: 2017_04_14-AM-09_14_20
Last ObjectModification: 2017_02_27-PM-03_51_40

Theory : int_2


Home Index