Nuprl Lemma : rem_sym_1a

[a:ℤ]. ∀[n:ℤ-o].  ((a rem n) (-(-a rem n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_nzero: -o nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  rem_sym_1 int_nzero_wf istype-int subtype_base_sq int_subtype_base minus-minus int_nzero_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin minusEquality hypothesisEquality hypothesis Error :universeIsType,  sqequalRule Error :isect_memberEquality_alt,  axiomEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination remainderEquality because_Cache setElimination rename Error :lambdaFormation_alt,  natural_numberEquality approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality voidElimination independent_pairFormation Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    ((a  rem  n)  =  (-(-a  rem  n)))



Date html generated: 2019_06_20-PM-01_14_05
Last ObjectModification: 2018_10_18-PM-00_41_53

Theory : int_2


Home Index